Conditionally Gaussian stochastic integrals
نویسندگان
چکیده
We derive conditional Gaussian type identities of the form E [ exp ( i ∫ T 0 utdBt ) ∣∣∣∣ ∫ T 0 |ut|dt ] = exp ( − 2 ∫ T 0 |ut|dt ) , for Brownian stochastic integrals, under conditions on the process (ut)t∈[0,T ] specified using the Malliavin calculus. This applies in particular to the quadratic Brownian integral ∫ t 0 ABsdBs under the matrix condition A †A2 = 0, using a characterization of Yor [6]. Intégrales stochastiques conditionnellement gaussiennes Résumé Nous obtenons des identités gaussiennes conditionnelles de la forme E [ exp ( i ∫ T 0 utdBt ) ∣∣∣∣ ∫ T 0 |ut|dt ] = exp ( − 2 ∫ T 0 |ut|dt ) , pour les intégrales stochastiques browniennes, sous des conditions sur le processus (ut)t∈[0,T ] exprimées à l’aide du calcul de Malliavin. Ces résultats s’appliquent en particulier à l’intégrale brownienne quadratique ∫ t 0 ABsdBs sous la condition matricielle A †A2 = 0, en utilisant une caractérisation de Yor [6].
منابع مشابه
Central limit theorems for multiple Skorohod integrals
In this paper, we prove a central limit theorem for a sequence of multiple Skorohod integrals using the techniques of Malliavin calculus. The convergence is stable, and the limit is a conditionally Gaussian random variable. Some applications to sequences of multiple stochastic integrals, and renormalized weighted quadratic variation of the fractional Brownian motion are discussed.
متن کاملRepresentation and properties of a class of condi - tionally Gaussian processes
It is shown that the class of conditionally Gaussian processes with independent increments is stable under marginalisation and conditioning. Moreover, in general such processes can be represented as integrals of a time changed Brownian motion where the time change and the integrand are jointly independent of the Brownian motion. Examples are given.
متن کاملFrom Random Processes to Generalized Fields: a Unified Approach to Stochastic Integration
The paper studies stochastic integration with respect to Gaussian processes and fields. It is more convenient to work with a field than a process: by definition, a field is a collection of stochastic integrals for a class of deterministic integrands. The problem is then to extend the definition to random integrands. An orthogonal decomposition of chaos space of the random field leads to two suc...
متن کاملConditional Moment Generating Functions for Integrals and Stochastic Integrals
In this paper we present two methods for computing filtered estimates for moments of integrals and stochastic integrals of continuous-time nonlinear systems. The first method utilizes recursive stochastic partial differential equations. The second method utilizes conditional moment generating functions. An application of these methods leads to the discovery of new classes of finitedimensional f...
متن کاملConditionally Gaussian Random Sequences for Robust Integrated Variance Estimation
Conditionally Gaussian random sequences generalize State Space models along two relevant directions: (a) the parameters of the model depend in an arbitrary way from past observations, but once this dependence is realized, the randomness can be expressed in terms of Gaussian random variables, (b) correlation is introduced between the transition and measurement equations, through the presence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015